
XEP-0106: JID Escaping

Joe Hildebrand
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

2016-07-08
Version 1.1.1

Status Type Short Name
Draft Standards Track jid\20escaping

This specification defines a mechanism that enables the display in Jabber Identifiers (JIDs) of charac-
ters normally disallowed in localparts. Although these characters — spaces, double quote, ampersand,
single quote, forward slash, colon, less than, greater than, and at-sign — cannot be included in XMPP
localparts, JID Escaping provides a native XMPP escaping mechanism for these characters so that the dis-
played version of a Jabber Identifier can appear to include these characters. This mechanism can also be
used to translate non-XMPP addreses into XMPP syntax, for example when gatewaying between XMPP
and a non-XMPP communications technology such as email.

mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 2

3 Transformations 2
3.1 Concepts . 2
3.2 Escaping Transformations . 3
3.3 Unescaping Transformations . 4

4 Business Rules 5
4.1 Native Processing . 5
4.2 Address Transformation Algorithm . 6
4.3 Exceptions . 7
4.4 JID Escaping vs. Older Methods . 8

5 Examples 8
5.1 Jabber Identifiers . 8
5.2 Email Addresses . 9
5.3 SIP Addresses . 11
5.4 IM and Presence Addresses . 11
5.5 IMPS Addresses . 12
5.6 LDAP Distinguished Names . 14
5.7 IRC Addresses . 15

6 Determining Support 16

7 Security Considerations 17

8 IANA Considerations 17

9 XMPP Registrar Considerations 18
9.1 Service Discovery Features . 18

10 Acknowledgements 18

1 INTRODUCTION

1 Introduction
RFC 7622 1 specifies that the following eight Unicode code points are disallowed in the
localpart of a Jabber Identifier (JID):

• U+0022 (”)

• U+0026 (&)

• U+0027 (’)

• U+002F (/)

• U+003A (:)

• U+003C (<)

• U+003E (>)

• U+0040 (@)

Furthermore, since localparts use the UsernameCaseMapped profile (RFC 7613 2) of PRECIS
any space character disallowed by category N (section 9.14) of the RFC 7564 3 IdentifierClass
is also forbidden.
This restriction is an inconvenience for users who have one or more of these ”disallowed
characters” in their desired usernames, particularly in the case of the apostrophe character,
which is common in names like O’Hara and D’Artagnan. The restriction is a positive hardship
if existing email addresses are mapped to JIDs, since some of the disallowed characters are
allowed in the username portion of an email address (specifically, the characters & ’ / as
described in Sections 3.2.3 and 3.2.4 of RFC 5322 4).
To overcome this restriction, we define a way to escape the disallowed characters in JIDs.
An escaped JID contains none of the disallowed characters and therefore can be transported
by native XMPP implementations without modification (e.g., existing XMPP servers do
not require modification in order to handle escaped JIDs). The escaped JID is unescaped
only for presentation to a human user (typically by an XMPP client) or for gatewaying to
a non-XMPP system (such as an LDAP database or amessaging system that does not use XMPP).

1RFC 7622: Extensible Messaging and Presence Protocol (XMPP): Address Format <http://tools.ietf.org/htm
l/rfc7622>.

2RFC 7613: Preparation, Enforcement, and Comparison of Internationalized Strings Representing Usernames and
Passwords<http://tools.ietf.org/html/rfc7613>.

3RFC 7564: PRECIS Framework: Preparation, Enforcement, and Comparison of Internationalized Strings in Appli-
cation Protocols <http://tools.ietf.org/html/rfc7564>.

4RFC 5322: Internet Message Format <http://tools.ietf.org/html/rfc5322>.

1

http://tools.ietf.org/html/rfc7622
http://tools.ietf.org/html/rfc7613
http://tools.ietf.org/html/rfc7564
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc7622
http://tools.ietf.org/html/rfc7622
http://tools.ietf.org/html/rfc7613
http://tools.ietf.org/html/rfc7564
http://tools.ietf.org/html/rfc5322

3 TRANSFORMATIONS

2 Requirements
This document addresses the following requirements:

1. The escaping mechanism shall apply to the localpart of a JID only, and MUST NOT be
applied to domainparts or resourceparts.

2. Escaped JIDs MUST conform to the definition of a Jabber ID as specified in RFC 7622 5,
including the UsernameCaseMapped profile of PRECIS. In particular this means that
even after passing through the enforcement step of the UsernameCaseMapped profile,
the JID MUST be valid, with the result that Unicode look-alikes like U+02BC (Modifier
Letter Apostrophe) MUST NOT be used.

3. It MUST NOT be possible for clients to use this escaping mechanism to avoid the goal
of PRECIS; namely, that JIDs that look alike should have same character represen-
tation after being processed by PRECIS. Therefore, this mechanism MUST NOT be
applied to any characters other than the disallowed characters (with the exception
that, in certain circumstances, the escaping character itself (”\”) might also be escaped).

4. Existing JIDs that include portions of the escaping mechanism MUST continue to be
valid.

5. The escaping mechanism MUST NOT break commonly deployed Jabber/XMPP software
implementations such as servers, components, gateways, and clients.

6. The escaping mechanism SHOULD NOT place undue strain upon server implementa-
tions; implementations or deployments that do not need to unescape SHOULD be able
to ignore the escaping mechanism.

3 Transformations
3.1 Concepts
This document specifies that each disallowed character shall be escaped as \hexhex — where
”hexhex” is the hexadecimal value of the Unicode code point in question, ignoring the leading
”00” in the code point (e.g., 27 for the apostrophe character, resulting in an escaping of \27).
If the & character had not been in the list of disallowed characters, then normal XML escaping
5RFC 7622: Extensible Messaging and Presence Protocol (XMPP): Address Format <http://tools.ietf.org/htm
l/rfc7622>.

2

http://tools.ietf.org/html/rfc7622
http://tools.ietf.org/html/rfc7622
http://tools.ietf.org/html/rfc7622

3 TRANSFORMATIONS

conventions (as specified in XML 1.0 6) could have been used, with the result that D’Artagnan
(for example) could have been rendered as D'artagnan [sic].
It might have been desirable to use percent-encoding (e.g., %27 for the apostrophe character)
as specified in Section 2.1 of RFC 3986 7. However, that approach was rejected since the %
character is an often-used character in existing JIDs (e.g., to replace the @ character in gate-
way addresses) and the resulting ambiguity would have caused misdelivered or undeliverable
messages.
To avoid the problems associated with using & or % as the escaping character, this document
specifies a new escaping mechanism that uses the backslash character (”\”) followed by
”hexhex” (the hexadecimal value of the Unicode code point in question). This escaping
method is quite similar to that used for disallowed characters in LDAP distinguished names
(see RFC 2253 8) but is used only for the characters that are disallowed in XMPP localparts (as
well as the escaping character itself in certain special situations).
Here is an example of an escaped JID (this would be displayed but never natively transported
as ”d’artagnan@musketeers.lit”):

d\27 artagnan@musketeers.lit

This document describes full escaping and unescaping transformations for all disallowed
characters. In addition, escaping and unescaping transformations are shown for the \ char-
acter in case it also needs to be escaped when it occurs in a JID or non-XMPP address as part
of a character sequence that corresponds to one of the escaped characters.
Note: All transformations are exactly as specified below. CASE IS SIGNIFICANT. Lowercase
was selected since the Case-Mapping Rule of the UsernameCaseMapped profile will case fold
to lowercase.

3.2 Escaping Transformations
The escaping transformations are defined in the following table, whereas the rules that
define when to apply these transformations are specified in the Business Rules section of this
specification. Typically, escaping is performed only by a client that is processing information
provided by a human user in unescaped form, or by a gateway to some external system (e.g.,
email or LDAP) that needs to generate a JID.

Unescaped Character Escaped Character
<space> \20 *
” \22
& \26
6Extensible Markup Language (XML) 1.0 (Fourth Edition) <http://www.w3.org/TR/REC-xml/>.
7RFC 3986: Uniform Resource Identifiers (URI): Generic Syntax <http://tools.ietf.org/html/rfc3986>.
8RFC 2253: Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names <ht
tp://tools.ietf.org/html/rfc2253>.

3

http://www.w3.org/TR/REC-xml/
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc2253
http://www.w3.org/TR/REC-xml/
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc2253
http://tools.ietf.org/html/rfc2253

3 TRANSFORMATIONS

Unescaped Character Escaped Character
’ \27
/ \2f
: \3a
< \3c
> \3e
@ \40
\ \5c

* Note: The character sequence \20 MUST NOT be the first or last character of an escaped
localpart. 9
In the following example, Porthos starts a chat with D’Artagnan, typing into his
client the string ”d’artagnan@musketeers.lit” (which is escaped by his client to
”d\27artagnan@musketeers.lit”).

Listing 1: JID Escaping
<message

from=’porthos@musketeers.lit/gate’
to=’d\27 artagnan@musketeers.lit’
type=’chat’>

<body>And do you always forget your eyes when you run?</body>
</message >

3.3 Unescaping Transformations
The unescaping transformations are defined in the following table, whereas the rules that
define when to apply these transformations are specified in the Business Rules section of this
specification. Typically, unescaping is performed only by a client that wants to display JIDs
containing escaped characters to a human user, or by a gateway to some external system (e.g.,
email or LDAP) that needs to generate identifiers for foreign systems.

Escaped Character Unescaped Character
\20 <space>
\22 ”
\26 &
\27 ’
\2f /
\3a :
\3c <
9For a similar restriction, see Section 2.4 of RFC 2253 10.

4

http://tools.ietf.org/html/rfc2253

4 BUSINESS RULES

Escaped Character Unescaped Character
\3e >
\40 @
\5c \

In the following example, D’Artagnan the elder sends a message through an SMTP mail
gateway (the JID is ”treville\40musketeers.lit@smtp.gascon.fr” and the destination email
address is ”treville@musketeers.lit”).

Listing 2: JID Unescaping
<message

from=’d\27 artagnan@gascon.fr/elder ’
to=’tréville \40 musketeers.lit@smtp.gascon.fr’>

<body>I recommend my son to you.</body>
</message >

4 Business Rules
4.1 Native Processing
The following processing rules apply to native XMPP implementations:

1. A compliant client MUST render an escaped character as its unescaped equivalent when
presenting it to a human user (e.g., present \27 as the apostrophe character), but MAY
provide a way for the user to view the escaped JID in its wire format (e.g., to compare
two JIDs).

2. A server or gateway MAY unescape an escaped character for communication with
external systems (e.g. LDAP), but only after the UsernameCaseMapped profile of PRECIS
has been applied.

3. An entity MUST unescape only the specified sequences and MUST NOT unescape
sequences that do not match the specified sequences.

4. An entity MUST NOT include the unescaped version of a disallowed character over the
wire in any XML stanzas sent to another entity.

5

4 BUSINESS RULES

5. An entity MUST NOT use the unescaped version of a disallowed character when com-
paring two JIDs.

6. The character sequence \20 MUST NOT be the first or last character of an escaped
localpart.

7. If there are any instances of character sequences that correspond to escapings of the
disallowed characters (e.g., the character sequence ”\27”) or the escaping character
(i.e., the character sequence ”\5c”) in the unescaped address, the leading backslash
character MUST be escaped to the character sequence ”\5c” (e.g., resulting in the
character sequences ”\5c27” or ”\5c5c”). 11

4.2 Address Transformation Algorithm
When transforming a non-XMPP (”source”) address into an escaped JID, an implementation
MUST adhere to the following process:

1. If the source address is a URI, it MUST first be properly decoded according to the rules
in RFC 3986 12 before it is transformed into a JID.

2. If the source address is a URI, the URI scheme component MUST be removed.

3. If there are any instances of character sequences that correspond to escapings of the
disallowed characters (e.g., the character sequence ”\27”) or the escaping character
(i.e., the character sequence ”\5c”) in the source address, the leading backslash charac-
ter MUST be escaped to the character sequence ”\5c” (e.g., resulting in the character
sequences ”\5c27” or ”\5c5c”).

4. All disallowed characters in the source address MUST be properly escaped in the
resulting JID (as described above).

While the fourth step should be clear from the foregoing text and the second step is necessary
since XMPP addresses are not URIs, the meaning of the first and third steps may not be
obvious.
11It is possible that some existing JIDs already contain character sequences matching ”\5chexhex” (where ”hex-

hex” is the hexadecimal value of the Unicode code point for a disallowed character or the backslash character),
which may result in confusion between escaped JIDs and their presentation in a client; however, a survey of
one large XMPP deployment yielded no instances of such sequences or even of the character sequence ”\5c”.

12RFC 3986: Uniform Resource Identifiers (URI): Generic Syntax <http://tools.ietf.org/html/rfc3986>.

6

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

4 BUSINESS RULES

Regarding step one, many non-XMPP messaging systems use URIs to identify addresses
(examples include the mailto:, sip:, sips:, im:, pres:, and wv: URI schemes) or follow some
other encoding rules for an identifier (e.g., an LDAP distinguished name). Before transforming
a non-XMPP address or identifier into a JID, the address or identifier MUST first be decoded
according the rules specified for that type of address or identifier in order to ensure that the
proper characters are transformed.
Regarding step three, it is possible for some non-XMPP addresses to contain character
sequences that correspond to JID-escaped characters (e.g., ”\27”). Consider a Wireless
Village address of <wv:\3and\2is\5cool@example.com> — if that address were directly
converted into a JID, the resulting XMPP address would be \3and\2is\5cool@example.com,
which could be construed as :nd\2is\ool@example.com if JID escaping logic is applied.
Therefore the leading \ character and the \ character before the character sequence 5c
MUST be converted to the character sequence ”\5c” during the transformation, leading to
a JID of \5c3and\2is\5c5cool@example.com (which would be presented to a human user as
\3and\2is\5cool@example.com).

4.3 Exceptions
In order to maintain as much backward compatibility as possible, partial escape sequences
and escape sequences corresponding to characters not on the list of disallowed characters
MUST be ignored (with the exception of the escaping character ’\’ itself in the rare case when
the source address includes the sequence ’\5c’).

Listing 3: Partial escape sequence
”\2plus\2is\4” is not modified by escaping or unescaping

transformations.

Listing 4: Invalid escape sequence 1
”foo\bar” is not modified (to ”fooºr”) by escaping or unescaping

transformations.

Listing 5: Invalid escape sequence 2
”foob \41r” is not modified (to ”foobAr”) by escaping or unescaping

transformations.

However, \5c would be escaped if found in the source address (e.g., a source address of
”c:\5commas@example.com” would be escaped to ”c\3a\5c5commas@example.com”)
and unescaped if contained in the JID-on-the-wire (e.g., a JID-on-the-
wire of ”c\3a\5c5commas@example.com” would be unescaped back to
”c:\5commas@example.com”).

7

5 EXAMPLES

4.4 JID Escaping vs. Older Methods
When a client attempts to communicate with another entity through a gateway, it needs
to know which escaping mechanism to use. A client MUST assume that the gateway does
not support the JID escaping mechanism unless it explicitly discovers support for the
jid\20escaping [sic] feature as described under Determining Support. If there are any errors
in the service discovery exchange or if support for JID escaping is not discovered, the client
SHOULD proceed as follows:

1. If the gateway supports the ’jabber:iq:gateway’ protocol (as specified in Gateway Inter-
action (XEP-0100) 13), use that protocol.

2. If the gateway does not support the ’jabber:iq:gateway’ protocol, use customary escaping
mechanisms (such as transformation of the @ character to the % character).

5 Examples
In order to assist developers, this section shows a large number of examples for XMPP-native
JIDs as well as mappings between JIDs and addresses or identifiers used in the following
standardized protocols:

• Mailboxes and the mailto: URI scheme as used in email.

• The sip: and sips: URI schemes as used in SIP/SIMPLE.

• The im: and pres: URI schemes.

• The wv: URI scheme as used in Wireless Village (IMPS).

• LDAP distinguished names.

5.1 Jabber Identifiers
The following table shows user input, the escaped JID for sending over the wire, and client
display (same as user input) for the localpart that might possibly be used in native JIDs. The
examples are numbered for easy reference. Naturally, a client that does not perform JID
escaping would display the JIDs in their escaped form (e.g., ”space\20cadet” instead of ”space
cadet”).

User Input Escaped JID Client Display
1 space cadet@example.com space\20cadet@example.comspace cadet@example.com

13XEP-0100: Gateway Interaction <https://xmpp.org/extensions/xep-0100.html>.

8

https://xmpp.org/extensions/xep-0100.html
https://xmpp.org/extensions/xep-0100.html
https://xmpp.org/extensions/xep-0100.html

5 EXAMPLES

User Input Escaped JID Client Display
2 call me ”ish-

mael”@example.com
call\20me\20\22ishmael\22@example.comcall me ”ish-

mael”@example.com
3 at&t guy@example.com at\26t\20guy@example.com at&t guy@example.com
4 d’artagnan@example.com d\27artagnan@example.comd’artagnan@example.com
5 /.fanboy@example.com \2f.fanboy@example.com /.fanboy@example.com
6 ::foo::@example.com \3a\3afoo\3a\3a@example.com::foo::@example.com
7 <foo>@example.com \3cfoo\3e@example.com <foo>@example.com
8 user@host@example.com user\40host@example.com user@host@example.com
9 c:\net@example.com c\3a\net@example.com c:\net@example.com
10 c:\\net@example.com c\3a\\net@example.com c:\\net@example.com
11 c:\cool

stuff@example.com
c\3a\cool\20stuff@example.comc:\cool

stuff@example.com
12 c:\5commas@example.com c\3a\5c5commas@example.comc:\5commas@example.com

5.2 Email Addresses
The address format for an Internet mailbox is specified in RFC 5322 14. The identifier of
interest in this context is the ”addr-spec” address and more particularly the ”dot-atom-text”
rule specified in Section 3.2.3, i.e., the email address shorn of angle brackets, display names,
comments, quoted strings, and the like. Because some deployments of XMPP messaging
systems may want to re-use existing email addresses as JIDs, it is helpful to define how to
transform an email address into a JID.
In general, it is straightforward to transform an email address (i.e., a ”dot-atom-text”) into a
JID, since traditional email addresses allow US-ASCII characters only rather than the nearly
full range of Unicode code points allowed in a JID. 15 However, there are three characters
allowed in the localpart of an email address that are not allowed in the localpart portion of a
JID: namely, the characters & ’ / as described in Sections 3.2.3 and 3.2.4 of RFC 5322 16. In order
to transform these characters, a compliant implementation MUST use the methods specified
herein.

Listing 6: An Email Address Containing JID-Disallowed Characters
here’s_a_wild_&_/cr%zy/_address@example.com

Listing 7: The Transformed JID
here \27 s_a_wild_ \26_\2fcr%zy\2 f_address@example.com

14RFC 5322: Internet Message Format <http://tools.ietf.org/html/rfc5322>.
15This specification does not cover recent efforts to define internationalized email addresses.
16RFC 5322: Internet Message Format <http://tools.ietf.org/html/rfc5322>.

9

http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5322

5 EXAMPLES

Listing 8: The JID as Presented to a User
here’s_a_wild_&_/cr%zy/_address@example.com

(Note: Because the backslash character is forbidden in the ”dot-atom-text” construction, an
email address should not contain a character sequence that corresponds to one of the escaped
characters specified in the Transformations section of this document; therefore, no such
examples are shown.)
An email address may also exist in the form of a mailto: URI as specified in RFC 2368 17. Before
transforming a mailto: URI into a JID, it MUST be URL-decoded and all headers MUST be
removed, leaving a mailbox identifier, as shown in the following example.

Listing 9: A mailto: URI Containing JID-Disallowed Characters
mailto:here %27 s_a_wild_ %26_%2Fcr%zy%2 F_address@example.com?subject=

that %20is%20 crazy %21

Listing 10: The Resulting Mailbox
here’s_a_wild_&_/cr%zy/_address@example.com

Listing 11: The Transformed JID
here \27 s_a_wild_ \26_\2fcr%zy\2 f_address@example.com

Listing 12: The JID as Presented to a User
here’s_a_wild_&_/cr%zy/_address@example.com

The foregoing examples showed how to transform an email address or mailto: URI into a JID.
However, it also may be necessary to convert a JID into an email address or mailto: URI, as
shown in the following example.

Listing 13: User Enters Address, Including Disallowed Characters
here’s_a_wild_&_/cr%zy/_address@example.com

Listing 14: Client Transforms Address Using JID Escaping
here \27 s_a_wild_ \26_\2fcr%zy\2 f_address@example.com

Listing 15: Application Converts Escaped JID to Mailbox
here’s_a_wild_&_/cr%zy/_address@example.com

Listing 16: Application Converts Mailbox to mailto: URI
mailto:here %27 s_a_wild_ %26_%2Fcr%zy%2 F_address@example.com

17RFC 2368: The mailto URL scheme <http://tools.ietf.org/html/rfc2368>.

10

http://tools.ietf.org/html/rfc2368
http://tools.ietf.org/html/rfc2368

5 EXAMPLES

5.3 SIP Addresses
As specified in RFC 3261 18, a SIP address (i.e., a sip: or sips: URI) can be quite complex if URI
parameters or headers are included. However, a basic SIP address (the combination of the
optional ”userinfo” and required ”hostport” constructions) is essentially similar to an email
address (e.g., the same characters & ’ / allowed in an email address but disallowed in an XMPP
localpart are also allowed in a basic SIP address).

Listing 17: A Basic sip: URI Containing JID-Disallowed Characters
sip:here %27 s_a_wild_ %26_%2Fcr%zy%2 F_address@example.com

Listing 18: The URL-Decoded Address
here’s_a_wild_&_/cr%zy/_address@example.com

Listing 19: The Transformed JID
here \27 s_a_wild_ \26_\2fcr%zy\2 f_address@example.com

Listing 20: The JID as Presented to a User
here’s_a_wild_&_/cr%zy/_address@example.com

The foregoing example showed how to transform a sip: or sips: URI into a JID. However, it also
may be necessary to convert a JID into a sip: or sips: URI, as shown in the following example.

Listing 21: User Enters Address, Including Disallowed Characters
here’s_a_wild_&_/cr%zy/_address@example.com

Listing 22: Client Transforms Address Using JID Escaping
here \27 s_a_wild_ \26_\2fcr%zy\2 f_address@example.com

Listing 23: Application Converts Escaped JID to sip: URI
sip:here %27 s_a_wild_ %26_%2Fcr%zy%2 F_address@example.com

5.4 IM and Presence Addresses
The im: and pres: URI schemes are specified in RFC 3860 19 and RFC 3859 20 respectively. With
the exception of headers, an im: or pres: URI is simply a mailbox (as specified in RFC 5322

18RFC 3261: Session Initiation Protocol (SIP) <http://tools.ietf.org/html/rfc3261>.
19RFC 3860: Common Profile for Instant Messaging (CPIM) <http://tools.ietf.org/html/rfc3860>.
20RFC 3859: Common Profile for Presence (CPP) <http://tools.ietf.org/html/rfc3859>.

11

http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3860
http://tools.ietf.org/html/rfc3859
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3860
http://tools.ietf.org/html/rfc3859

5 EXAMPLES

21) prepended with the im: or pres: scheme. Thus a basic IM or PRES address (not including
optional headers) is essentially similar to an email address (e.g., the same characters & ’ /
allowed in an email address but disallowed in an XMPP localpart are also allowed in a basic IM
or PRES address).

Listing 24: A Basic im: URI Containing JID-Disallowed Characters
im:here %27 s_a_wild_ %26_%2Fcr%zy%2 F_address@example.com

Listing 25: The URL-Decoded Address
here’s_a_wild_&_/cr%zy/_address@example.com

Listing 26: The Transformed JID
here \27 s_a_wild_ \26_\2fcr%zy\2 f_address@example.com

Listing 27: The JID as Presented to a User
here’s_a_wild_&_/cr%zy/_address@example.com

The foregoing example showed how to transform an im: or pres: URI into a JID. However,
it also may be necessary to convert a JID into an im: or pres: URI, as shown in the following
example.

Listing 28: User Enters Address, Including Disallowed Characters
here’s_a_wild_&_/cr%zy/_address@example.com

Listing 29: Client Transforms Address Using JID Escaping
here \27 s_a_wild_ \26_\2fcr%zy\2 f_address@example.com

Listing 30: Application Converts Escaped JID to pres: URI
pres:here %27 s_a_wild_ %26_%2Fcr%zy%2 F_address@example.com

5.5 IMPS Addresses
The Instant Messaging and Presence Service (IMPS) protocol was originally defined by the
Wireless Village consortium and is now maintained by the Open Mobile Alliance (OMA) 22. An
IMPS address is formatted as a wv: URI, as specified in WV Client-Server Protocol v1.1 23. A
21RFC 5322: Internet Message Format <http://tools.ietf.org/html/rfc5322>.
22The Open Mobile Alliance is the focal point for the development of mobile service enabler specifications, which

support the creation of interoperable end-to-end mobile services. For further information, see <http://www.o
penmobilealliance.org/>.

23Wireless Village Client-Server Protocol v1.1 <http://www.openmobilealliance.org/tech/affiliates/wv/wv
index.html>.

12

http://www.openmobilealliance.org/
http://www.openmobilealliance.org/tech/affiliates/wv/wvindex.html
http://tools.ietf.org/html/rfc5322
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/tech/affiliates/wv/wvindex.html
http://www.openmobilealliance.org/tech/affiliates/wv/wvindex.html

5 EXAMPLES

basic address (not including a private resource) is of the form <wv:user-id@domain> and an
address with a private resource is of the form <wv:user-id/resource@domain>.
The ”User-ID” construction is either a mobile phone number (beginning with ”+1” for
international numbers and a digit for national numbers) or an ”Internet-Identity”. An
”Internet-Identity” may contain any US-ASCII character other than / @ + SP TAB and thus
may include the following characters that are disallowed in the localpart of a JID: ” & ’ / : < >
(which characters MUST be escaped when transforming an IMPS address into a JID). However,
some of those characters are also reserved in URI syntax (namely the & ’ / characters) so those
characters will be found in escaped form within a wv: URI.

Listing 31: A Basic wv: URI Containing JID-Disallowed Characters
wv:here %27 s_a_wild_ %26_%2Fcr%zy%2 F_address_for %3A%3Cwv%3E%28%22 IMPS

%22%29 @example.com

Listing 32: The URL-Decoded Address
here’s_a_wild_&_/cr%zy/_address_for: <wv >(” IMPS”) @example.com

Listing 33: The Transformed JID
here \27 s_a_wild_ \26_\2fcr%zy\2 f_address_for \3a\3cwv\3e(\22 IMPS \22)

@example.com

Listing 34: The JID as Presented to a User
here’s_a_wild_&_/cr%zy/_address_for: <wv >(” IMPS”) @example.com

Unlike the foregoing address types, IMPS addresses are allowed to contain backslashes. This
implies that it is possible for an IMPS address to contain a character sequence that corresponds
to one of the escaped character representations for code points that are disallowed in XMPP
localparts. An example would be the IMPS address <wv:\3and\2is\5cool@example.com>,
where the character sequence ”\3a” could be interpreted as the : character (and the
character sequence ”\5c” as ”\”) if that IMPS address is directly converted into a JID.
Therefore, the leading \ character MUST be transformed to ”\5c” (and the source character
sequence ”\5c” to ”\5c5c”) in order to avoid possible ambiguity. Thus the transformed
JID would be <\5c3and\2is\5c5cool@example.com>, which would be presented to a user as
<\3and\2is\5cool@example.com>.
If an IMPS address contains a private resource, a gateway between XMPP and IMPS should
process the resource and append it to the end of the JID; however, such gateway behavior is
out of scope for this document.
The foregoing example showed how to transform a wv: URI into a JID. However, it also may
be necessary to convert a JID into a wv: URI, as shown in the following example.

Listing 35: User Enters Address, Including Disallowed Characters
here’s_a_wild_&_/cr%zy/_address_for: <wv >(” IMPS”) @example.com

13

5 EXAMPLES

Listing 36: Client Transforms Address Using JID Escaping
here \27 s_a_wild_ \26_\2fcr%zy\2 f_address_for \3a\3cwv\3e(\22 IMPS \22)

@example.com

Listing 37: Application Converts Escaped JID to wv: URI
wv:here %27 s_a_wild_ %26_%2Fcr%zy%2 F_address_for %3A%3Cwv%3E%28%22 IMPS

%22%29 @example.com

5.6 LDAP Distinguished Names
Within the Lightweight Directory Access Protocol (see RFC 2251 24), a ”distinguished name”
(DN) is a hierarchically-organized string representation that uniquely identifies a user,
system, or organization. It is possible that some messaging systems use LDAP distinguished
names to identify entities that can communicate using the system (e.g., this is reputed to be
the case for certain releases of the Lotus Sametime system sold by IBM), and in any case it may
be helpful to transform an LDAP distinguished name into an XMPP address for identification
or addressing purposes.
As previously mentioned, a UTF-8 string representation of LDAP distinguished names is
specified in RFC 2253 25. This representation specifies that the characters , + ” \ < > ; are to
be escaped with the backslash character (e.g., the character sequence ”\,” would be used to
escape the , character) and that any other non-US-ASCII characters are to be escaped using a
character sequence of the form ”\xx”.
The following example shows a distinguished name (and transformations thereof) for a person
whose common name is ”D’Artagnan Saint-André” and who is associated with an organization
called ”Example & Company, Inc.” whose domain name is ”example.com”:

Listing 38: A Distinguished Name
CN=D’Artagnan␣Saint -André ,O=Example␣&␣Company ,␣Inc.,DC=example ,DC=com

Listing 39: UTF-8 Representation of Distinguished Name
CN=D’Artagnan␣Saint -Andr\E9 ,O=Example␣&␣Company\,␣Inc.,DC=example ,

DC=com

This example assumes that the specified user is identified with a gateway running at
st.example.com (note that the backslash escaping the , character in the organization name is
removed during the transformation).

24RFC 2251: Lightweight Directory Access Protocol (v3) <http://tools.ietf.org/html/rfc2251>.
25RFC 2253: Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names <ht

tp://tools.ietf.org/html/rfc2253>.

14

http://tools.ietf.org/html/rfc2251
http://tools.ietf.org/html/rfc2253
http://tools.ietf.org/html/rfc2251
http://tools.ietf.org/html/rfc2253
http://tools.ietf.org/html/rfc2253

5 EXAMPLES

Listing 40: The Transformed JID
CN=D\27 Artagnan \20Saint -Andr\E9,O=Example \20\26\20 Company ,\20 Inc.,DC=

example ,DC=com@st.example.com

Listing 41: The JID as Presented to a User
CN=D’Artagnan␣Saint -André ,O=Example␣&␣Company ,␣Inc.,DC=example ,DC=

com@st.example.com

Naturally, a more intelligent gateway could use the Domain Components to construct a more
readable JID, such as <D\27Artagnan\20Saint-André@example.com>; however, such gateway
behavior is out of scope for this document.
The foregoing example showed how to transform an LDAP distinguished name into a JID.
However, it also may be necessary to convert a JID into an LDAP distinguished name, as shown
in the following example.

Listing 42: User Enters Address, Including Disallowed Characters
CN=D’Artagnan␣Saint -André,O=Example␣&␣Company ,␣Inc.,DC=

example ,DC=com@st.example.com

Listing 43: Client Transforms Address Using JID Escaping
CN=D\27 Artagnan \20Saint -Andr\E9,O=Example \20\26\20 Company ,\20 Inc.,DC=

example ,DC=com@st.example.com

Listing 44: Application Converts Escaped JID to UTF-8 Representation of LDAP Distinguished
Name

CN=D’Artagnan␣Saint -Andr\E9 ,O=Example␣&␣Company\,␣Inc.,DC=example ,
DC=com

Listing 45: Application Converts UTF-8 Representation to LDAP Distinguished Name
CN=D’Artagnan␣Saint -André ,O=Example␣&␣Company ,␣Inc.,DC=example ,DC=com

5.7 IRC Addresses
RFC 2812 26 defines the address format for Internet Relay Chat (IRC) entities, which can be
servers, channels, or users. The ”user” portion of an IRC address may contain any octet except
NUL, CR, LF, SP, and ”@”; this includes the characters ” & ’ / : < > \ (which are disallowed in
XMPP localparts and thereforeMUST be escapedwhen transforming an IRC address into a JID).

Listing 46: A Basic IRC address Containing JID-Disallowed Characters
somenick!user”&’/:<>\3 address@example.com

26RFC 2812: Internet Relay Chat: Client Protocol <http://tools.ietf.org/html/rfc2812>.

15

http://tools.ietf.org/html/rfc2812
http://tools.ietf.org/html/rfc2812

6 DETERMINING SUPPORT

Listing 47: The Transformed JID
somenick!user \22\26\27\2f\3a\3c\3e\5 c3address@example.com

Listing 48: The JID as Presented to a User
somenick!user”&’/:<>\3 address@example.com

Like IMPS addresses, IRC addresses are allowed to contain backslashes. This implies that it is
possible for an IMPS address to contain a character sequence that corresponds to one of the
escaped character representations for code points that are disallowed in XMPP localparts. An
example is shown above.

6 Determining Support
If an entity needs to determine whether another entity supports JID escaping, it MUST send a
disco#info request to the other entity as specified in Service Discovery (XEP-0030) 27.

Listing 49: Client requests features
<iq type=’get’

from=’porthos@musketeers.lit/gate’
to=’irc.shakespeare.lit’
id=’info1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

If the queried entity supports JID escaping, it MUST return a jid\20escaping [sic] feature in
its reply.

Listing 50: Service responds with features
<iq type=’get’

to=’porthos@musketeers.lit/gate’
from=’irc.shakespeare.lit’
id=’info1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
...

<feature var=’jid \20 escaping ’/>
</query >

</iq>

27XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

16

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

8 IANA CONSIDERATIONS

7 Security Considerations
If an entity (e.g., a client or a gateway) performs JID escaping, it MUST do so consistently (for
example, a client or server MUST consistently apply JID escaping and unescaping to the JIDs
it handles) so that the entity does not present the same JID in two different ways or present
two different JIDs in the same way.
Naturally, if one entity performs JID escaping and another entity does not perform JID
escaping, the same JID could be presented differently by those entities (e.g., the JID
d\27artagnan@musketeers.lit would be presented as d’artagnan@musketeers.lit by a
client that performs JID escaping but as d\27artagnan@musketeers.lit by a client that
does not perform JID escaping). By the same token, two different JIDs could be pre-
sented in the same way by those entities (e.g., the JID foo\5cbar@example.com would be
presented as foo\bar@example.com by a client that performs JID escaping and the JID
foo\bar@example.com would be presented as foo\bar@example.com by a client that does
not perform JID escaping). These differing presentations could be a source of confusion (e.g.,
the same human user could use two different clients, one of which performs JID escaping and
one of which does not). This confusion may have security implications since in rare instances
messages and other information could be directed to an entity other than the intended
recipient; unfortunately, this is unavoidable until all XMPP clients support JID escaping.
An entity that performs JID escaping MUST NOT compare unescaped versions, otherwise
messages and other information could be directed to an entity other than the intended
recipient.
An entity that transforms a non-XMPP address into a JID MUST follow the algorithm specified
in the Address Transformation Algorithm section of this document, otherwise messages and
other information could be directed to an entity other than the intended recipient.

8 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
28.

28The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

17

http://www.iana.org/
http://www.iana.org/

10 ACKNOWLEDGEMENTS

9 XMPP Registrar Considerations
9.1 Service Discovery Features
The XMPP Registrar 29 includes the jid\20escaping [sic] feature in its registry of service
discovery features.

10 Acknowledgements
The authors would like to thank Robin Redeker for his feedback.

29The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

18

https://xmpp.org/registrar/
https://xmpp.org/registrar/

	Introduction
	Requirements
	Transformations
	Concepts
	Escaping Transformations
	Unescaping Transformations

	Business Rules
	Native Processing
	Address Transformation Algorithm
	Exceptions
	JID Escaping vs. Older Methods

	Examples
	Jabber Identifiers
	Email Addresses
	SIP Addresses
	IM and Presence Addresses
	IMPS Addresses
	LDAP Distinguished Names
	IRC Addresses

	Determining Support
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Service Discovery Features

	Acknowledgements

