
XEP-0113: Simple Whiteboarding

Huib-Jan Imbens
mailto:jabber@imbens.nl
xmpp:imbens@jabber.org

2003-09-07
Version 0.2

Status Type Short Name
Deferred Informational Not yet assigned

A proposal for an extremely simple whiteboarding protocol over Jabber.

mailto:jabber@imbens.nl
xmpp:imbens@jabber.org

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements 1

3 Use Cases 2
3.1 Single whiteboard message . 2
3.2 Whiteboard chat session . 3
3.3 Conference room whiteboard . 5

4 Implementation Notes 5
4.1 The GUI . 5
4.2 Karma . 6
4.3 Text . 6
4.4 Clearing the screen . 7

5 Security Considerations 7

6 IANA Considerations 8

7 XMPP Registrar Considerations 8

8 Formal Definition 8
8.1 Schema . 8
8.2 DTD . 9
8.3 Grammar of ”d” attribute . 9

9 Conclusion 11

10 Acknowledgements 11

2 REQUIREMENTS

1 Introduction
As explained in the now obsolete XEP-0010: Whiteboarding 1: ”Jabber is often thought of
simply as a system for instant messaging, albeit an open one. However, Jabber technology
can be used, and is being used, in applications quite different from simple IM. One of these
applications is whiteboarding. In collaborative work, the ability to draw (for example, to
design sketches, UML schemas, house architectures, and organizational plans) is essential,
as exemplified by the success of real-world whiteboarding applications such as Microsoft
NetMeeting. Whiteboarding can also be used for entertainment purposes such as games and
quizzes. Because of the value of whiteboarding as an important real-time collaboration tool,
other IM services are beginning to offer these capabilities. For these and other reasons, I
believe that a good protocol for whiteboarding in Jabber would be of great value”.
The increasing penetration of pen-based devices, such as PDAs and tablet PCs, makes the need
for a protocol that allows for sending freehand drawing information more urgent.
Several attempts have been made to create a whiteboarding protocol for Jabber:

1. Collaborative Imaging (Whiteboarding via Streaming XPM) describes a protocol that
sends partial bitmaps. This protocol is not suitable for freehand drawing and has not
been implemented.

2. JabberWhiteboarding using SVG 2 describes a protocol that uses a subset of SVG. It refers
to a missing DTD that describes the precise subset, but there is little doubt that that
subset will be hard to implement. This protocol has not been implemented.

3. The Coccinella client includes an open source implementation of a whiteboarding pro-
tocol. However, the protocol has not been documented and does not seem easy to im-
plement. In fact it is mostly raw TCL, making an implementation of that protocol in a
language other than TCL rather difficult.

4. The Tkabber client has a whiteboard plugin. The protocol has not been documented, but
it uses a subset of SVG, similar to the one defined in this document.

2 Requirements
The protocol has the following requirements in order of importance:

1. It should allow for freehand drawing because that will be its principal use on pen-based
devices.

2. It should be extremely easy to implement to ensure its rapid adaptation.

3. It should be light-weight.
1XEP-0010: Whiteboarding SIG http://www.xmpp.org/extensions/xep-0010.html
2Jabber Whiteboarding using SVG http://www.protocol7.com/jabber/whiteboard_proposal.txt

1

http://www.xmpp.org/extensions/xep-0010.html
http://www.protocol7.com/jabber/whiteboard_proposal.txt

3 USE CASES

4. It should not require server modifications.

The following are definitely not objectives of the protocol:

1. It need not be complete. Eventually an SVG-based protocol will be defined that will ei-
ther replace or coexist with this protocol and that will satisfy all drawing needs. How-
ever, given the history of whiteboarding protocols, such a protocol is far away.

2. It need not be extensible. As a ”Simple Whiteboarding protocol” it should not try to
grow into a more complex protocol that would be more difficult to implement.

3 Use Cases
There are three scenarios where whiteboarding can be used:

• One person sends a single, completed, whiteboard to another person.

• The more typical scenario is the one where one person starts a whiteboard session with
another person and both persons collaborate in the drawing. Both sides may add paths,
move them around or delete them.

• Finally multiple people gathered in a conference room can use single whiteboard.

3.1 Single whiteboard message
Typically the user right-clicks on the destination contact and will select a ”whiteboard
message” option. The client will show a dialog where the user can create the drawing. It is
up to the implementation to decide whether the user can include text in the message as well.
Upon clicking a send button the client will close the dialog and send the following message:

Listing 1: Single whiteboard message
<message

from=’painter@shakespeare.lit’
to=’timon@shakespeare.lit/hall’>

<body>A piece of painting , which I do beseech your lordship to
accept.</body>

<x xmlns=’http: // jabber.org/protocol/swb’>
<path d=’M␣100␣100␣L␣300␣100␣200␣300␣100␣100’ stroke=’#ff0000 ’

stroke -width=’1’ id=’painter1 ’/>
</x>

</message >

The path node is a simplified SVG path node that allows only ’M’, ’m’, ’L’ and ’l’ commands.
’M’ (’m’) command is a (relative) moveto command, ’L’ (’l’) is a (relative) lineto command. All

2

3 USE CASES

four commands take one or more coordinate pairs (in pixels). ’M’ sets the current point to
the coordinate pair. ’m’ adds the coordinate pair to the current point. ’L’ draws a line from
the current point to the point designated by the coordinate pair and sets the current point to
the coordinate pair. ’l’ draws a line from the current point to the sum of the currentpoint and
the coordinate pair and adds the coordinate pair to the current point. The optional stroke
attribute indicates the color of the path and defaults to black, the optional stroke-width
indicates the width of the path in pixels and defaults to 1. The id attribute can be used for
later reference to the path. If there is no id attribute, the path can not be referred to.
The path in example 1, draws a red triangle with vertices (100,100), (300,100) and (200, 300)
Other respresentations of the same path are ’M100.0,100.0L300.0,100.0,200.0,300.0,100.0,100.0’,
’M100,100l200,0-100,200-100-200’ and ’M100,100l200,0L200,300,100,100’. Note that in the sec-
ond representation some commas can be left out because the sign indicates that a new
coordinate is starting. This fact can be used to reduce data size as much as possible to avoid
karma problems. A precise grammar of the ”d” attribute is given below.
A typical implementation will generate such paths by adding an ’M’ command with the mouse
coordinates on a mouse down event and adding an ’L’ command with the mouse coordinates
on every mouse move event as long as the mouse is down. It is up to the implementation to
decide whether to complete and send the message on a mouse up event or to wait for a click
on a send button.

3.2 Whiteboard chat session
A more typical use case is where two clients share a whiteboard. Again the user will right
click on the destination and will select a ”whiteboard chat” option. The client will present
a dialog where the user can create a drawing. Upon clicking a send button or releasing the
mouse button, the client will send the following message:

Listing 2: Initiating a whiteboard chat session
<message

from=’kingclaudius@shakespeare.lit/castle ’
to=’laertes@shakespeare.lit/castle ’
type=’chat’>

<thread >c357e044c676cc5e3c729d07544c87b58a366dba </thread >
<body>... like the painting ... ?</body>
<x xmlns=’http: // jabber.org/protocol/swb’>

<path d=’M100 .0 ,100.0 L300 .0 ,100.0 ,200.0 ,300.0 ,100.0 ,100.0 ’ id=’
kingclaudius1 ’ />

</x>
</message >

In this case the dialog will not close. At the destination client a similar dialog will pop up,
allowing the user at the other end to add her own part of the drawing. The resulting message
will look like this (line breaks provided for readability only):

3

3 USE CASES

Listing 3: Continuing a whiteboard chat session
<message

from=’laertes@shakespeare.lit/castle ’
to=’kingclaudius@shakespeare.lit/castle ’
type=’chat’>

<thread >c357e044c676cc5e3c729d07544c87b58a366dba </thread >
<x xmlns=’http: // jabber.org/protocol/swb’>

<path d=’M␣32␣41␣L␣33␣40␣33␣39␣34␣38␣34␣37␣35␣36␣35␣34␣36␣33␣37
␣␣␣␣␣␣␣␣␣␣␣␣␣32␣38␣31␣38␣30␣39␣30␣40␣28␣41␣27␣42␣26␣43␣26␣44␣25␣45
␣␣␣␣␣␣␣␣␣␣␣␣␣24␣46␣24␣48␣23␣50␣22␣52␣21␣53␣21␣54␣21␣55␣21␣55␣20␣56
␣␣␣␣␣␣␣␣␣␣␣␣␣20␣58␣20␣59␣20␣60␣20␣61␣20␣62␣20␣63␣20␣64␣20␣65␣20␣66
␣␣␣␣␣␣␣␣␣␣␣␣␣20␣67␣20␣68␣20␣69␣20␣69␣21␣70␣21␣71␣22␣72␣23␣72␣24␣73
␣␣␣␣␣␣␣␣␣␣␣␣␣25␣73␣26␣73␣27␣73␣28␣73␣29␣73␣30␣74␣30␣74␣31␣74␣32␣75
␣␣␣␣␣␣␣␣␣␣␣␣␣33␣75␣34␣75␣35␣75␣36␣75␣37␣75␣38␣75␣39␣75␣40␣75␣41␣75
␣␣␣␣␣␣␣␣␣␣␣␣␣43␣75␣44␣75␣46␣75␣47␣75␣48␣75␣49␣75␣50␣74␣52␣74␣53␣74
␣␣␣␣␣␣␣␣␣␣␣␣␣54␣73␣55␣72␣55␣72␣57␣72␣58␣71␣58␣70␣60␣69␣61␣69␣63␣68
␣␣␣␣␣␣␣␣␣␣␣␣␣64␣67␣64␣67␣65␣67␣66␣66␣67␣65␣67␣65␣69␣64␣70␣64␣71␣63
␣␣␣␣␣␣␣␣␣␣␣␣␣72␣62␣73␣62␣74␣62␣75␣61␣75␣60␣76␣60␣77␣59␣77␣59␣78␣59
␣␣␣␣␣␣␣␣␣␣␣␣␣79␣58␣79␣58␣80␣58␣81␣58␣82␣57␣82␣57␣83␣57␣84␣57␣86␣57
␣␣␣␣␣␣␣␣␣␣␣␣␣87␣56␣87␣56␣88␣56␣89␣55␣89␣55␣90␣55␣91␣55␣92␣54␣93␣54
␣␣␣␣␣␣␣␣␣␣␣␣␣94␣54␣95␣54␣96␣M␣55␣113␣L␣54␣113␣53␣113␣52␣113␣51␣113
␣␣␣␣␣␣␣␣␣␣␣␣␣49␣114␣49␣115␣48␣115␣47␣115␣47␣116␣47␣117␣46␣117␣45␣117
␣␣␣␣␣␣␣␣␣␣␣␣␣45␣118␣45␣120␣45␣121␣45␣123␣45␣124␣45␣125␣45␣127␣45␣128
␣␣␣␣␣␣␣␣␣␣␣␣␣45␣130␣46␣131␣46␣132␣46␣133␣47␣133␣47␣134␣48␣134␣49␣134
␣␣␣␣␣␣␣␣␣␣␣␣␣49␣135␣50␣135␣51␣135␣52␣135␣52␣136␣54␣136␣55␣136␣56␣136
␣␣␣␣␣␣␣␣␣␣␣␣␣57␣136␣58␣136␣59␣136␣59␣135␣60␣134␣61␣133␣61␣132␣61␣131
␣␣␣␣␣␣␣␣␣␣␣␣␣61␣130␣62␣130␣62␣129␣62␣128␣62␣127␣62␣126␣62␣125␣62␣123
␣␣␣␣␣␣␣␣␣␣␣␣␣62␣122␣62␣120␣61␣120␣61␣119␣61␣118␣61␣117␣60␣117␣59␣117
␣␣␣␣␣␣␣␣␣␣␣␣␣58␣117␣56␣117␣55␣117␣54␣117’ />

</x>
</message >

It is left as a mental exercise to the reader to imagine Laertes answer. Alternatively the reader
could build this protocol into her favorite Jabber client, set a breakpoint, and paste the path
above at the appropriate place.
Alternatively Laertes could respond like:

Listing 4: Moving a path
<message

from=’laertes@shakespeare.lit/castle ’
to=’kingclaudius@shakespeare.lit/castle ’
type=’chat’>

<thread >c357e044c676cc5e3c729d07544c87b58a366dba </thread >
<x xmlns=’http: // jabber.org/protocol/swb’>

<move id=’kingclaudius1 ’ dx=’ -100’ dy=’ -100’/>
</x>

</message >

4

4 IMPLEMENTATION NOTES

This would move the King’s triangle 100 pixels to the left and top, to the upper left corner of
the screen.
If Laertes were bold enough he might even answer:

Listing 5: Deleting a path
<message

from=’laertes@shakespeare.lit/castle ’
to=’kingclaudius@shakespeare.lit/castle ’
type=’chat’>

<thread >c357e044c676cc5e3c729d07544c87b58a366dba </thread >
<x xmlns=’http: // jabber.org/protocol/swb’>

<delete id=’kingclaudius1 ’/>
</x>

</message >

This would remove King Claudius’s triangle from the screen.

3.3 Conference room whiteboard
The final use case is the one where multiple users, gathered in a conference room, share a
single whiteboard. Messages will typically look like this:

Listing 6: Conference room whiteboard
<message

from=’nestor@shakespeare.lit’
to=’plains@conference.shakespeare.lit’
type=’groupchat ’>

<body>So , so, we draw together.</body>
<x xmlns=’http: // jabber.org/protocol/swb’>

<path d=’M100 ,100l200 ,0L200 ,300 ,100 ,100’ />
</x>

</message >

4 Implementation Notes
4.1 The GUI
Usually when a user wants to send a message to a contact, the client will present her with
a choice between sending a message or starting a chat. If the client implements the present
protocol, the client can add the options of sending a whiteboard message and starting a
whiteboard chat. Whether the client offers these options for an individual contact could be

5

4 IMPLEMENTATION NOTES

based on standard Service Discovery (XEP-0030) 3 or Jabber Browsing (XEP-0011) 4 techniques.
Presentation of a path in case of a ”Single whiteboard message” is rather obvious. The
presentation of multiple-user whiteboards, either chat or conference, leaves more to the
imagination of the implementor. The implementor could decide to use different colors for
paths drawn by different users. The saturation of a path could decrease with age.

4.2 Karma
One issue that will hinder all whiteboard protocol implementations is the karma problem. At
least jabberd uses karma to make sure that a client does not send to much data to the server.
This should help against denial-of-service attacks. When you use up all your karma, the server
stops handling your messages for a while. This is a problem for whiteboards because it is
much easier to send a lot of drawing data, than to send a lot of textual data. Usually combining
paths, that is, sending paths when the user clicks on a send button instead of on mouse up,
reduces data size because it reduces the overhead of the message element. Using the relative
lineto command (’l’) instead of the absolute lineto (’L’) command will also reduce message
size, because usually relative coordinates will only use one or two digits whereas absolute
coordinates will typically use three. Finally implementations can reduce message size by not
recording every mouse move event, e.g. by dropping mouse events whose locations would be
accurately interpolated.

4.3 Text
The protocol does not provide explicit support for drawing text. The reason for this is that
explicit support, eg. in the form of the SVG text element 5, would break the second and
third requirements above. However a client can still provide text support by representing
characters as paths, eg. by using a Hershey font.
The code snippet below shows the lines along which this could be done:

Listing 7: Coding the letter A into a path
// generating the path <path d=’M14␣6l-8,21M14␣6l8 ,21M9␣20l10 ,0’/>

from the letter ’A’

static char* sHersheyFontData [] = {
...
”I[RFJ[␣RRFZ[␣RMTWT”, // the character A, consisting

of three strokes
...
};

3XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
4XEP-0011: Jabber Browsing <https://xmpp.org/extensions/xep-0011.html>.
5Text - SVG 1.0 http://www.w3.org/TR/SVG/text.html

6

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0011.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0011.html
http://www.w3.org/TR/SVG/text.html

5 SECURITY CONSIDERATIONS

for (int i = 0 ; sHersheyFontData [’A’][2*i+2] != 0 ; i++) {
// read a new coordinate pair
POINT myPoint = {sHersheyFontData [’A’][2*i+2]-’R’,

sHersheyFontData [’A’][2*i+2+1]-’R’)};
// test for the special case pen up
if (myPoint.x == -50 && myPoint.y == 0) {

penUp = true;
} else {

if (penUp) {
penUp = false;
currentPathSet.push_back (std::vector

<POINT > ()); // pen goes down , add
a new path

}
currentPathSet.back ().push_back (myPoint); //

pen is down add a new point to the latest
path

}
}

The string ’Jabber’ would be encoded as the path ’M24 59l0,16-1,3-1,1-2,1-2,0-2-1-1-1-1-3
0-2M43 66l0,14M43 69l-2-2-2-1-3,0-2,1-2,2-1,3 0,2 1,3 2,2 2,1 3,0 2-1 2-2M51 59l0,21M51 69l2-2
2-1 3,0 2,1 2,2 1,3 0,2-1,3-2,2-2,1-3,0-2-1-2-2M70 59l0,21M70 69l2-2 2-1 3,0 2,1 2,2 1,3 0,2-1,3-
2,2-2,1-3,0-2-1-2-2M88 72l12,0 0-2-1-2-1-1-2-1-3,0-2,1-2,2-1,3 0,2 1,3 2,2 2,1 3,0 2-1 2-2M107
66l0,14M107 72l1-3 2-2 2-1 3,0’, which is 357 characters long. That is no more than twice the
size of a typical groupchat text message.

4.4 Clearing the screen
Some of the protocols mentioned in the introduction, have a clear-screen command. How-
ever the benefits of such a command are doubtful. Of course clients can implement such
a command locally. A client might even implement finer control such as the possibility of
opening new windows that will receive new paths, or showing paths based on whether they
were drawn in a selectable timespan. Synchronization of such complex actions between
clients is clearly beyond the scope of this protocol. Of course when it is absolutely necessary
to clear the screens of both sides in a whiteboard chat, that could be implemented by sending
delete-commands for all paths.

5 Security Considerations
There are no security features or concerns related to this proposal.

7

8 FORMAL DEFINITION

6 IANA Considerations
This document requires no interaction with the the Internet Assigned Numbers Authority
(IANA) 6.

7 XMPP Registrar Considerations
This document requires registration of the namespace ”http://jabber.org/protocol/swb” by
the XMPP Registrar 7.

8 Formal Definition
8.1 Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http: // jabber.org/protocol/swb’
xmlns=’http: // jabber.org/protocol/swb’
elementFormDefault=’qualified ’>

<xs:element name=’x’>
<xs:complexType >

<xs:element ref=’path’ minOccurs=’0’ maxOccurs=’unbounded ’/>
<xs:element ref=’move’ minOccurs=’0’ maxOccurs=’unbounded ’/>
<xs:element ref=’delete ’ minOccurs=’0’ maxOccurs=’unbounded ’/>

</xs:complexType >
</xs:element >

<xs:element name=’path’>
<xs:complexType >

<xs:attribute name=’d’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’stroke ’ type=’xs:string ’ use=’optional ’

default=’#000000 ’/>
<xs:attribute name=’stroke -width ’ type=’xs:integer ’ use=’

optional ’ default=’1’/>
<xs:attribute name=’id’ type=’xs:string ’ use=’optional ’/>

6The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

7The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

8

http://www.iana.org/
http://www.iana.org/
https://xmpp.org/registrar/
http://www.iana.org/
https://xmpp.org/registrar/

8 FORMAL DEFINITION

</xs:complexType >
</xs:element >

<xs:element name=’move’>
<xs:complexType >

<xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
<xs:attribute name=’dx’ type=’xs:integer ’ use=’required ’/>
<xs:attribute name=’dy’ type=’xs:integer ’ use=’required ’/>

</xs:complexType >
</xs:element >

<xs:element name=’delete ’>
<xs:complexType >

<xs:attribute name=’id’ type=’xs:string ’ use=’required ’/>
</xs:complexType >

</xs:element >

</xs:schema >

8.2 DTD

<?xml version=’1.0’ encoding=’UTF -8’?>
<!ELEMENT x (path*, move*, delete *) >
<!ELEMENT path EMPTY >
<!ATTLIST path d CDATA #REQUIRED

stroke CDATA #IMPLIED
stroke -width CDATA #IMPLIED
id CDATA #IMPLIED >

<!ELEMENT move EMPTY >
<!ATTLIST move id CDATA #REQUIRED

dx CDATA #REQUIRED
dy CDATA #REQUIRED >

<!ELEMENT delete EMPTY >
<!ATTLIST delete id CDATA #REQUIRED >

8.3 Grammar of ”d” attribute
The grammar of the ”d” attribute below is a slight simplification of section 8.3.9 in 8.

simple -whiteboard -path:
wsp* moveto -drawto -command -groups? wsp*

moveto -drawto -command -groups:
moveto -drawto -command -group

8Scalable Vector Graphics (SVG) 1.0 Specification, section 8.3.1.: The grammar for path data http://www.w3.org
/TR/SVG/paths.html#PathDataBNF

9

http://www.w3.org/TR/SVG/paths.html##PathDataBNF
http://www.w3.org/TR/SVG/paths.html##PathDataBNF

8 FORMAL DEFINITION

| moveto -drawto -command -group wsp* moveto -drawto -
command -groups

moveto -drawto -command -group:
moveto wsp* drawto -commands?

drawto -commands:
drawto -command
| drawto -command wsp* drawto -commands

drawto -command:
lineto

moveto:
(”M” | ”m”) wsp* moveto -argument -sequence

moveto -argument -sequence:
coordinate -pair
| coordinate -pair comma -wsp? lineto -argument -sequence

lineto:
(”L” | ”l”) wsp* lineto -argument -sequence

lineto -argument -sequence:
coordinate -pair
| coordinate -pair comma -wsp? lineto -argument -sequence

coordinate -pair:
coordinate comma -wsp? coordinate

coordinate:
number

nonnegative -number:
integer -constant
| floating -point -constant

number:
sign? integer -constant
| sign? floating -point -constant

flag:
”0” | ”1”

comma -wsp:
(wsp+ comma? wsp*) | (comma wsp*)

comma:
”,”

10

10 ACKNOWLEDGEMENTS

integer -constant:
digit -sequence

floating -point -constant:
fractional -constant exponent?
| digit -sequence exponent

fractional -constant:
digit -sequence? ”.” digit -sequence
| digit -sequence ”.”

exponent:
(”e” | ”E”) sign? digit -sequence

sign:
”+” | ”-”

digit -sequence:
digit
| digit digit -sequence

digit:
”0” | ”1” | ”2” | ”3” | ”4” | ”5” | ”6” | ”7” | ”8” |

”9”

wsp:
(#x20 | #x9 | #xD | #xA)

9 Conclusion
The present protocol satisfies its basic requirements: it allows for freehand drawing, it is easy
to implement, light-weight and it requires no server changes.

10 Acknowledgements
The author would like to thank Alexey Shchepin for helpful comments.

11

	Introduction
	Requirements
	Use Cases
	Single whiteboard message
	Whiteboard chat session
	Conference room whiteboard

	Implementation Notes
	The GUI
	Karma
	Text
	Clearing the screen

	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Formal Definition
	Schema
	DTD
	Grammar of "d" attribute

	Conclusion
	Acknowledgements

